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Table S1  Mapping subcellular locations of immunofluorescence images in the human protein atlas 

to five major subcellular locations. 

Immunofluorescence subcellular location Mapped to major subcellular location 

Aggresome 

Cytoplasm 

Cytoplasmic bodies 

Cytosol 

Rods & rings 

Cell junctions 

Plasma membrane 

Plasma membrane 

Golgi apparatus Golgi apparatus 

Mitochondria Mitochondria 

Nuclear bodies 

Nucleus 

Nuclear membrane 

Nuclear speckles 

Nucleoli 

Nucleoli fibrillar center 

Nucleoplasm 

Nucleus 
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Table S2  Experimental results of using different beam sizes.  

Beam size Subset accuracy Accuracy Precision Recall F1-score 

1 0.575 0.665 0.751 0.667 0.694 

2 0.580 0.670 0.757 0.675 0.701 

3 0.581 0.671 0.757 0.675 0.701 
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Table S3  Experimental results of screening the dataset. 

Iteration number Subset accuracy Accuracy Precision Recall F1-score 

M=0 *  0.553 0.652 0.719 0.684 0.686 

M=1 0.575 0.673 0.741 0.703 0.707 

M=2 0.585 0.676 0.743 0.699 0.707 

M=3 * 0.594 0.682 0.748 0.705 0.713 

M=4 0.582 0.675 0.742 0.704 0.709 

* M=0: CNN without data screening; M=3: deep model used as encoder in laceDNN.  
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Table S4  Experimental results of whether incorporating label correlations. The results are 

obtained by five-fold cross validation. 

Method† Subset 

accuracy 

Accuracy Precision Recall F1-score  

CNN 0.554 0.652 0.719 0.684 0.686 

CNNS 0.594 0.682 0.749 0.705 0.713 

CNN+LSTMWP 0.563 0.654 0.744 0.654 0.684 

CNN+LSTMP 0.581 0.671 0.758 0.676 0.701 

Liu et al. (CNN+LSTM) 0.398 0.422 0.445 0.422 0.429 

Islam et al. (CNN+LSTM) 0.447 0.504 0.572 0.506 0.527 

Wang et al. (CNN+LSTM) 0.559 0.653 0.744 0.652 0.683 

laceDNN (CNNS+LSTM) 0.614 0.707 0.798 0.709 0.738 

† CNN: CNN trained on the initial dataset. CNNS: CNN fine-tuned with screened dataset. LSTMWP: LST

M without using the predicted probabilities. LSTMP: LSTM incorporating the label correlations (predicted 

probabilities). laceCNN: our final proposed method. 

 


